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Abstract—Proactive preparedness to cope with emergencies,
especially those of nature origins, significantly improves the
resilience and minimizes the restoration cost of electric power
systems. In this paper, a proactive resource allocation model for
repair and restoration of potential damages to the power system
infrastructure located on the path of an upcoming hurricane is
proposed. The objective is to develop an efficient framework for
system operators to minimize potential damages to power system
components in a cost-effective manner. The problem is modeled
as a stochastic integer program with complete recourse. The
large-scale equivalence of the original model is solved by the
Benders’ Decomposition method to handle computation burden.
The standard IEEE 118-bus system is employed to demonstrate
the effectiveness of the proposed model and further discuss its
merits.

Index Terms—Hurricane planning, power system resiliency,
resource allocation, stochastic program with recourse.

NOMENCLATURE

b Index for buses.

Cb Hourly crew cost per person for bus b repair.

Cl Hourly crew cost per person for line l repair.

Cg
it Generation cost of unit i at time t.

Csd
it Shutdown cost of unit i at time t.

Csu
it Startup cost of unit i at time t.

Dbt Load demand at bus b at time t.

i Index for generation units.

Iit Commitment state of generating unit i at time
t; 1 if committed, otherwise 0.

l Index for transmission lines.

LIbt Load interruption at bus b at time t.

M Large positive constant.

Nb Set of components connected to bus b.
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p(s) Probability of scenario s.

Pit Real power generation of unit i at time t.

Pmax
it Maximum generation capacity of unit i .

Pmin
it Minimum power generation capacity of unit i.

PLlt Power flow of line l at time t.

Rmax
t Number of available repair crew at time t.

Rt Size of repair crew allocated to a component
at time t.

s Index for scenario.

SDit Shutdown cost of unit i at time t.

SUit Startup cost of unit i at time t.

t Index for time.

T Random time to repair for each component.

V OLLbt Value of lost load at bus b at time t.

ubt Repair state variable of bus b at time t; 1 if on
repair, otherwise 0.

vlt Repair state variable of line l at time t; 1 if on
repair, otherwise 0.

X+
t Secondary resource state penalty variable.

wlt Outage state of line l at time t; 0 if damaged,
otherwise 1.

yit Outage state of unit i at time t; 0 if damaged,
otherwise 1.

zbt Outage state of bus b at time t; 0 if damaged,
otherwise 1.

αib Element of unit i and bus b in generation-bus
incidence matrix.

βlb Element of line l and bus b in line-bus inci-
dence matrix.

γ Probability of damage of a component.

δbts Bus voltage angle.

ϑi Random initial state of unit i after hurricane
strikes; 0 if damaged, otherwise 1.

ξ A multivariate random variable.

φb Random initial state of bus b after hurricane
strikes; 0 if damaged, otherwise 1.

ψl Random initial state of line l after hurricane
strikes; 0 if damaged, otherwise 1.



I. INTRODUCTION

Natural disasters and extreme weather events, in particular
hurricanes, result in significant economic, social, and physical
disruptions and cause considerable inconvenience for residents
living in disaster areas due to loss of electricity, water, and
communication [1]. Therefore, it calls for a comprehensive
study of this issue from different perspectives to find efficient
ways of improving the resilience of these critical lifeline
systems.

Various studies have been proposed in the literature in
the context of emergency planning for power systems. In
[2], the research problems and models for substations and/or
distribution feeders planning under normal and emergency
conditions were reviewed and discussed. A case study on
hurricane planning and rebuilding the electrical infrastructure
along the Gulf Coast for hurricane Katrina was presented in
[3]. A risk assessment method for infrastructure technology
planning to improve the power supply resiliency to natural
disasters was proposed in [4]. Reduced cost as well as power
supply availability were considered as two fundamental de-
cision factors in their hurricane planning approach. In [5] a
stochastic integer program was proposed to find the optimal
schedule for inspection, damage evaluation, and repair of post-
earthquake damaged electric power system. The aim was to
minimize the average time that each customer is without
power. A comprehensive survey of models and algorithms for
emergency response logistics in electric distribution systems,
including reliability planning with fault considerations and
contingency planning models, were presented in [6], [7].

In the context of physical behavior analysis of power system
infrastructure in hurricane disaster, [8] analyzed the resilience
of power distribution systems based on the power distribution
infrastructure and its interaction with the biophysical environ-
ment, and the way that restoration processes are prioritized.
It was concluded that even though the infrastructure does not
have any significant effect on outage duration, the interaction
between infrastructure and the biophysical environment sig-
nificantly affects on outage duration. In another study, a data
mining approach to evaluate the impact of soil and topographic
variables on accuracy of the power outage prediction models
in hurricane events was proposed [9]. The results indicate
that certain land cover variables can be approximated for the
power system and be incorporated in the model when detailed
information about the power system is not available. In [10]
a method for characterization of the behavior of networked
infrastructure, including power delivery systems in natural
hazard events such as hurricanes, was presented. The model
also included resilience and interdependency measures. The
model can be utilized to develop design strategies for improved
power infrastructure resiliency in natural disasters. [11] pro-
posed a probabilistic framework for vulnerability analysis of
distribution poles subject to hurricane hazards considering the
impact of changing climate. The results indicate that changing

climate and the age of the poles significantly increases the
failure rate of distribution poles.

Outage prediction is an important means in order to have
an efficient response to the hurricane. In this context, [12]
introduced a method for estimating the restoration time of
electric power systems after hurricanes and ice storms. Using
a large dataset of six hurricanes and eight ice storms, the
accelerated failure time models were developed to forecast
the duration of each probable outage. In [13] the negative
binomial regression models for prediction of outages due to
hurricane were developed. The number of transformers in
the area, maximum gust wind speed, the power company
affected, and a hurricane effect turned out to be the most
explanatory variables. Diagnostic statistics such as pseudo R-
squared values were used for model selection purposes. Their
adopted zip code based model can be used for prediction of
the likely outage rates prior to the hurricane events. In another
work, [14] used regression analysis and data mining to develop
models to estimate the number of utility poles that will be
damaged based on damage data from past storms. Results
indicate that the hurricane-prone damages to the poles can
be predicted in an accurate manner, given that past damage
data are available and adequate. However, the availability of
past data can be a challenging issue, which limits the models
efficiency in practice.

In the context of resource allocation for restoration of power
systems, [15] presented three mathematical goal programming
models in order to locate the repair units and restore the
transmission and distribution lines in an efficient manner. The
first model finds the optimal repair-unit dispatch tactical plan
with a forecast of adverse weather conditions. The second
model derives the optimal repair-unit location for a short-
term strategic plan under normal weather conditions. The third
model finds the optimal number of repair units for a long-term
strategic plan. In another work, a mixed-integer programming
model and a general column-generation approach for inventory
decision making of power system components throughout a
populated area for maximization of the amount of power
served after disaster restoration was proposed [16]. In [17] the
service restoration considering the restrictions on emergency-
response logistics was studied with the objective of minimizing
the customers interruption cost. The reconfiguration and the
resources dispatching issues were considered in a systematic
way in order to derive the optimal time sequence for every
step of the restoration plan. In [18] a decision-making model to
manage the required resources for economic power restoration
operation was proposed. The optimal number of depots, the
optimal location of depots, and the optimal number of repair
crews were determined by their model in order to minimize
the transportation cost associated with restoration operation. In
[19] a decision support tool for improvement of information
used by electric utilities for managing restoration of power
distribution components damaged due to large-scale storms
was described. The circuit layout, the placement of protective
and switching devices, and the location of customers were
taken into account to allocate the crew resources in order to



manage the storm outage in a cost-effective manner.
Although variety of problems for power system planning in

hurricane-prone events have been addressed in the literature,
to the best of our knowledge a few provide a comprehensive
and generic approach for resource allocation. In this paper,
an efficient decision making tool is developed for restoration
planning of power systems to minimize the expected customer
load interruption cost, restoration operation cost, and elec-
tricity generation cost. The physics and the economy of the
power system, specifically the unit commitment problem are
incorporated into our model,which results in higher practicality
of the proposed model for utility companies.

The rest of this paper is organized as follows: Section II
describes the proposed model and Section III presents the
problem formulation and methodology. Section IV illustrates
the numerical results on the IEEE 118-bus test system.
Finally, Section V provides the concluding remarks.

II. MODEL DESCRIPTION

Consider a power system whose some of its components,
including generation units, transmission lines, and substations
along with downstream distribution lines, are located on the
path of an upcoming hurricane. The objective is to proactively
allocate and mobilize available resources to enable quick re-
sponse capability of system operators to repair and restore po-
tential damages, in a way that minimizes the expected incurred
costs. Furthermore, estimation of additional resources which
need to be outsourced in order to cope with the aftermath of
the hurricane is another critical issue for system operators.
The expected incurred cost composed of the customers load
interruption cost, electrcity generation cost, and the system
repair and restoration cost.

In this paper, the damage state of components are repre-
sented by Bernoulli random variables and are considered to
have two states: damaged and functional. If after the upcoming
hurricane the component is still functional, the value of 1 will
be assigned; and if the component is damaged, this value will
be 0. Weather-related failure rate and probability of component
damages follow models in [1].

The time to repair for each potentially damaged component
is considered to be stochastic and is modeled by a random
variable that may take various probability distributions. In this
paper, without loss of generality, it is assumed that the time to
repair random variables to be defined by the Weibull density
function as follows

fTk
(t) =

{
ρ
λk

(
t
λk

)ρ−1

e−(t/λk)
ρ

if t ≥ 0,

0 otherwise,
(1)

where ρ is the shape parameter, λk is the scale parameter, and
k ∈ {b, i, l}. Any other probability distribution can be used
without loss of generality. Considering the stochastic nature of
the pre-hurricane problem, resources need to be allocated in
a way that minimizes the expected cost of system restoration.
However, at the time of resource allocation the damage state
and the time to repair of components are not yet realized.

Moreover, there are set of decision variables that need to
be determined in the later stage once the outcomes of the
hurricane are known. Therefore, the problem structure would
be a two-stage stochastic problem with recourse. The objective
will be to allocate resources in a way that minimizes first-
stage resource allocation costs as well as expected recourse
costs. In this class of problems, for each possible stochastic
circumstance, a set of recourse (second-stage) activities can
be performed to compensate the violation of the prevailing
constraints [20].

III. PROBLEM FORMULATION AND METHODOLOGY

The problem is formulated as a two-stage stochastic linear
program with recourse. The general formulation of a two-stage
stochastic linear program with recourse is as follows

min
x

z = cx+ Q(x)
s.t. Ax = b, x ∈ X, (2)

where c is the cost vector, b is the right hand side vector,
x = [ubt

T , vlt
T ]

T
is the first stage decision variable, A is

the coefficient matrix of the first stage variable (which in our
model is the cost coefficient of the resource constraint), and
function Q(x) is the second stage value function (expected
recourse cost function) defined as

Q(x) = Eξ[Q(x, ξ(ω))] (3)

with

Q(x, ξ(ω)) = min
y

{q(ω)y|Wy = h(ω)− T (ω)x, y ∈ Y } (4)

where
y = [LIbts

T , Iits
T , Pits

T , SUits
T , SDits

T , X+
bts

T
, Xlts

+T
]
T

is the second stage variable of the proposed model, q(ω) is the
recourse penalty coefficient, W is the recourse matrix (which
is the coefficient matrix of the second stage variables in the
recourse problem’s constraints) T is the technology matrix
(which is the coefficient matrix of the first stage variables in
the recourse problem’s constraints), and ξ is a random N -
vector in (Ω, A, S) probability space (which in our model is
the multivariate random variable of damage state and time to
repair for all components under hurricane damage risk) [21].

A. Objective function

The objective of the pre-hurricane model is to minimize the
cost of the first stage resource allocation decisions, and the
expected cost of second stage system configuration as follows:

min
u,v

∑
t

∑
b

Cbt ·Rbt · ubt +
∑
t

∑
l

Clt ·Rlt · vlt

+ ES

[
min

LI,I,P,SU,SD,X+
l ,X+

b

∑
t

∑
b

V OLLbt · LIbts

+
∑
t

∑
i

(
Cg

it · Iits · Pits + SUits + SDits

)

+
∑
l

∑
t

q+lt ·X+
lts +

∑
b

∑
t

q+bt ·X+
bts

]
, (5)



The first term represents the cost of resources primarily
allocated to substations (and their downstream distribution
lines), and the second term is the cost of resources primarily
allocated to transmission lines. The expected second-stage
(recourse) function includes the load interruption cost over
the restoration planning horizon, and the total generation cost
including fuel costs, startup costs, and shutdown costs in
scenario s. It further includes the cost of secondary resources
that are allocated to transmission lines and substations under
scenario s. These secondary resources fill the shortage of
actual restoration resources that have not been allocated in
the first stage decisions, but are required to accomplish the
restoration operations under scenario s. Mathematically, these
secondary resources eliminate infeasibility of the second stage
problem under any decision which is made in the first stage.

B. Constraints

1) Resource constraint: The first stage problem is con-
strained by restriction on primary resources (6) which repre-
sents the maximum amount of resources that can be allocated
to the entire system in each time period.∑

l

Rlt · vlt +
∑
b

Rbt · ubt ≤ Rmax
t , ∀t. (6)

2) Damage state of generation units: The initial damage
state of each generating is represented by the outcome of
random variable ϑi ∼ Bernoulli(γi). The damage state of
generation units over the restoration horizon is modeled as
follows:

t−M · yits ≤ (1− ϑsi ) · T s
i , ∀i, ∀t, ∀s, (7)

yits ≤ ϑsi , ∀i, ∀t = 0, ..., Ti, ∀s, (8)

where T s
i is the outcome of random variable T i ∼

Weibull(λi) in scenario s. If at the beginning of the restora-
tion horizon of scenario s, the generation unit i is in damaged
state, then the outcome of random variable ϑ i denoted by ϑs

i

is 0; hence it needs to be restored. The state of a damaged
generating unit does not change, unless the required restoration
operation is performed. On the other hand, if the generation
unit is functional, then the random variable ϑ i is 1 which
indicates that it can be immediately committed for generation.
It is assumed that if a generation unit is in the functional
initial state, its state will remain the same up to the end of the
restoration horizon for that particular scenario.

3) Damage state of substations: The initial damage state
of each substation b under scenario s, zb0s is represented with
the outcome of random variable φb ∼ Bernoulli(γb). The
damage state of each substation over the restoration horizon
under scenario s is modeled as follows:

zb0s = φsb, ∀b, ∀s, (9)

0 ≤ zb(t+1)s −
(

t∑
k=1

(
ubk +X+

bks

)
− T s

b + 0.5

)
/M ≤ 1

∀b, ∀t, ∀s. (10)

t+T s
b −1∑

k=t

(
ubk +X+

bks

)
≥ T s

b

(
ubt +X+

bts − ub(t−1)

−X+
b(t−1)s

)
, ∀b, ∀t, ∀s, (11)

where T s
b is the outcome of random variable Tb ∼

Weibull(λb), and ubt is the first stage decision variable on
primary resource allocation to bus b at time t; and

ubt +X+
bts ≤ 1, ∀b, ∀t, ∀s. (12)

Constraint (9) models the damage state of a substation
during restoration horizon, while (10) guarantees that enough
resources are allocated to the component for repair purposes.
It is assumed that if a substation under a scenario s is initially
in functional state (zb0s = 1), it will remain in the same state
up to the end of the restoration horizon.

4) Damage state of transmission lines: In the same way as
generation units and substations, the initial damage state of
transmission lines is represented by the outcome of a random
variable ψl ∼ Bernoulli(γl). The damages state and repair
duration of transmission lines in each scenario are modeled as
follows:

wl0s = ψls, ∀l, ∀s, (13)

0 ≤ wl(t+1)s −
(

t∑
k=1

(
vlk +X+

lks

)
− Tls + 0.5

)
/M ≤ 1

∀l, ∀t, ∀s, (14)

t+Tls−1∑
k=t

(
vlk +X+

lks

)
≥ Tls

(
vlt +X+

lt − vl(t−1)

−X+
l(t−1)s

)
, ∀l, ∀t, ∀s, (15)

where T s
l is the outcome of random variable T l ∼

Weibull(λls), and

vlt +X+
lts ≤ 1, ∀l, ∀t, ∀s. (16)

If a transmission line is damaged, its initial state variable
(wl0s) becomes 0, and remains unchanged until required
resources are allocated and repaired the damaged component.
On the other hand, if it does not undergo any damage, w l0s

takes the value of 1. It is assumed that the functional state of a
component remains unchanged during the restoration horizon.

5) Load balance constraint: The bus load balance con-
straint for each scenario is represented as follows:∑

i∈Nb

Pits +
∑
l∈Nb

PLlts + LIbts = Dbt, ∀b, ∀t, ∀s. (17)

This constraint ensures that the injected power to a bus from
connected transmission lines and generation units must supply
the bus load in each scenario; however, if the injected power
is not sufficient, the load supply will be interrupted equal to
the load interruption variable (LIbts).



6) Power generation constraints: The real power gener-
ation of unit i is constrained with its damage state, the
commitment state, and its minimum and maximum generation
capacity as follows

Pmin
i · yits · Iits ≤ Pits ≤ Pmax

i · yits · Iits, ∀i, ∀t, ∀s. (18)

The coupling constraint of unit commitment and damage
state holds for each scenario as

Iits ≤ yits, ∀i, ∀t, ∀s. (19)

The damage state of substations connected to each generat-
ing unit also constrains the real power generation as

−M
∑
b

αib · zbts ≤ Pits ≤M
∑
b

αib · zbts, ∀i, ∀t, ∀s, (20)

Thus, if the substation connected to a generation unit is
damaged, the generating unit becomes offline.

7) Power flow constraints: Transmission network power
flow is modeled as follows

−PLmax
l · wlts ≤ PLlts ≤ PLmax

l · wlts, ∀l, ∀t, ∀s, (21)

−M
∑
b

βfrom
lb · zbts ≤ PLlts ≤M

∑
b

βfrom
lb · zbts,

∀l, ∀t, ∀s, (22)

−M
∑
b

|βto
lb |·zbts ≤ PLlts ≤M

∑
b

|βto
lb |·zbts, ∀l, ∀t, ∀s,

(23)

−M(1− wlts)−M(1−
∑
b

|βlb| · zbts)

≤ PLlts −
∑

b βlb · δbts
xl

≤

M(1− wlts)−M(1−
∑
b

|βlb| · zbts), ∀l, ∀b, ∀t, ∀s, (24)

If line l at time t is in the functional state, the power can be
flowed in either of the two directions, but not more than the
maximum power flow capacity of the line (21). However, if the
line is damaged, the line flow will be equal to 0. In addition,
as long as any of the substations connected to each particular
transmission line is in the damaged state, the associated line
flow would be set to 0 (22)-(23). The transmission line flow
is related to bus voltage angles as in (24).

8) Unit commitment constraints: The unit commitment
constraints for thermal generating units are important feature
of the hurricane restoration planning model. The related MIP
constraints, i.e., startup and shutdown costs, ramp-up and
ramp-down, and minimum uptime and downtime constraints
are imposed to the model in order to incorporate the impact
of optimal unit commitment configuration of the system in
restoration decision making [22].

9) Nonanticipativity: An important issue that needs to be
considered in solving stochastic programs is that the decisions
should not depend on the outcome of stochastic parameters,
denoted as the nonanticipativity concept [20]. One way to
enforce the nonanticipativity requirement is the Birge’s method
[23]. For instance, for LIbts the nonanticipativity is modeled
as follows:⎛
⎝∑

ś∈St
s

p(ś)

⎞
⎠ · LIbts =

∑
ś∈St

s

p(s) · LIbtś, ∀b, ∀t, ∀s, (25)

where St
s is the set of scenarios that are identical to scenario

s at time t. A similar formulation structure for the rest of the
second stage variables is considered in the model.

C. The proposed scheme

1) Scenario construction and reduction: Due to presence of
continues random variables, i.e., the Weibull distribution for
time to repair of each damaged component, the stochastic data
process of the proposed models, ξ has an infinite support. To
make the problem tractable, the stochastic data process ξ needs
to be redistributed to provide a finite support with the reduced
(optimal) number of scenarios. We use the Latin hypercube
sampling [24] to replace ξ by a scenario tree approximation
ξtr which has a finite, but large number of scenarios. The
Latin hypercube sampling guarantees that the whole range of
values for a random variable is sampled. For a sample size of
N , the Latin hypercube sampling technique selects N different
values from each of random variables by dividing the range of
each random variable into N non-overlapping intervals. Then
by shuffling and pairing these values constructs N scenarios,
each with probability of 1/N .

The next step is to reduce the number of scenarios into a
computationally tractable size. Various reduction techniques
are available to be applied for different applications. For the
constructed probability measure of ξtr =

∑N
k=1

1
N sk, it is

required to determine an index set K
′
∗ ⊂ {1, ..., N} of given

cardinality #K
′
∗ = N − N

′
and a probability measure ξ̃∗ =∑N

k′=1,k′ /∈K′
∗
p∗
k′ sk′ such that

μ̂c(ξtr, ξ̃∗) = inf

{
μ̂c

(
ξtr,

N∑
k=1,k/∈K′

∗

pk′ sk′

)
:

K
′
∗ ⊂ {1, ..., N},#K ′

∗ = N −N
′
,∑

k′ /∈K′
∗

pk′ = 1, pk′ ≥ 0, k
′
/∈ K

′
}

(26)

where Kantorovich functional μ̂c(ξtr, ξ̃∗) is an estimation of
the probability distance ζc(ξtr , ξ̃∗). Problems (26) can be
solved through variety of techniques, but due to accuracy
of backward reduction algorithm, we solve it through this
method. Readers are referred to [26] for the detailed expla-
nation of the backward scenario reduction algorithm.



Algorithm 1 Benders’ decomposition for two-stage problem with recourse

{initialization}
Lower bound (LB) := −∞, Upper bound (UB):= +∞
Solve initial IP master problem
minu,v {first stage problem}
ū := u∗, v̄ := v∗ {optimal values}

while UB − LB > ε do
for s ∈ S
{solve MIP second stage problem for each scenario s}

end for

UB := min {UB,
∑

t

∑
b Cbt.R

min
b .ūbt+∑

t

∑
l Clt.R

min
l .v̄lt + p(s)[

∑
t

∑
b V OLLbt.L̄Ibts+∑

t

∑
i(C

g
it.Īits.P̄its + S̄U its + S̄Dits)+∑

l

∑
t q

+
lt .X̄

+
lts +

∑
b

∑
t q

+
bt.X̄

+
bts]}

Add cut θ ≥ ∑
s p(s)(−πs.[Tsx+Wsy − hs])

{solve the master problem
minu,v,θ

∑
t

∑
b Cbt.R

min
b .ubt +

∑
t

∑
l Clt.R

min
l .vlt + θ

s.t. cuts and original constraints}

ū := u∗, v̄ := v∗, θ̄ := θ∗ {optimal values}
LB :=

∑
t

∑
b Cbt.R

min
b .ūbt +

∑
t

∑
l Clt.R

min
l .v̄lt + θ̄

end while

2) Decomposition strategy: Due to the large scale
of the deterministic equivalence of the proposed model,
using Benders’ decomposition method [27], the problem is
decomposed into a master problem which includes the first
stage problem, and N − N

′
(i.e. the number of reduced

scenarios) subproblems. We use the Benders’ decomposition
algorithm for two-stage problem with complete recourse,
as shown in Algorithm 1. The first stage problem is only
involved with ubt and vlt variables and corresponding
resource constraints, while the subproblem for each scenario
s is composed of the rest of the recourse function with the
rest of the constraints of the model. The constraints with
θ represent the optimality cuts; and πs represents the dual
variable of the scenario s. Since the problem has a complete
recourse, thus the subproblems are always feasible. Therefore,
there is no need for feasibility cut in the decomposition
algorithm. This iterative algorithm is continued until desired
optimality gap is obtained.

IV. NUMERICAL ANALYSIS

The IEEE 118-bus system is considered to study the pro-
posed model. The component of the system located on the
path of the upcoming hurricane along with the associated
probability of damage, as well as the scale parameter of the
Weibully distributed time to repair are given in the first three
columns of Tables I-III. The shape parameter of the Weibull
distribution for all components are assumed to be equal to
1. The value of lost load is considered to be $3706/MWh
for industrial loads, $6979/MWh for commercial loads, and
$110/MWh for residential areas [28]. The load on bus B62
is industrial, while loads on buses B88, B92, and B93 are

commercial. The rest of the loads are considered as residential.
The repair crew is considered to be the only limited resource
that is allocated to repair damaged components. It is assumed
that each damaged substation requires 10 repair crews/hour,
while each damaged transmission line requires 15 repair
crews/hour. The wages for repair crews of substations are as
assumed follows: $60/hour at shift 1 (8:00 A.M.–4:00 P.M.),
$70/hour at shift 2 (4:00 P.M.–12:00 A.M.), and $80/hour
at shift 3 (12:00 A.M.–8:00 A.M.). An incremental rate of
$5/hours is added to the wage of transmission lines’ repair
crew. The generation cost is considered to be $35.09/MWh
[29]. The shutdown cost for each generating unit is assumed
to be $250. The startup cost is assumed to be $150 within the
first hour after last shutdown. For each additional hour (up to
eight hours), an incremental cost of $25 is added to the startup
cost. Three cases are considered for analysis as follows:
Case I (full restoration): The primary resources are consid-
ered as unconstrained. The restoration of all components are
enforced. The aim is to find the optimal value for the maximum
amount of resources required for full restoration.
Case II (partial restoration): The primary resources are
constrained to obtained value in Case I. The restoration is
not enforced for all damaged components. The aim is to
analyze the economic dynamics of the restoration, regardless
of system-level reliability.
Case III (expected value problem): The expected value
problem of the proposed model is solved. The aim is to find
the value of stochastic solution (VSS) for the problem.

All three cases are analyzed in a 120-hour restoration plan-
ning horizon. For Cases I and II, 3000 independent scenarios
are generated using the Latin hypercube sampling method
[25]. With the use of the backward reduction algorithm [26],
the number of scenarios are reduced to 10, with associated
probabilities of 0.336, 0.011, 0.017, 0.065, 0.029, 0.308, 0.115,
0.012, 0.057, and 0.05. All three cases are solved using the
Benders’ decomposition method. First, the proposed model is
solved for Case I to find Rmax(t), i.e., the maximum resource
level required to restore the entire system. After obtaining
Rmax(t), this value is imposed as a constraint in Case II
in order to study system behavior, when the system-level
reliability is not considered. The derived value for Rmax(t)
in Case I is 210 crew/hour. The fourth and fifth columns of
Table II respectively show the optimal schedule of resources
that need to be allocated to damaged substations in Case I and
II; while the fourth and fifth columns of Table III respectively
represent allocation of resources to transmission lines in Cases
I and II. The adjacent allocation schedules to each component
are merged, while the overlapping allocations are removed
from the results (associated costs are also deducted in the
latter case). As shown in the results, there are components
in the system which have multiple allocations, i.e., B87,
L91, L100, L131, L132, and L135 in Case I. These multiple
allocations perform as a guarantee for the system to different
scenarios that can occur when the hurricane strikes. On the
other hand, there are components in the system without any
allocated resources. The reason is due to low expected cost of



damage to these components. This phenomenon also occurs
in Case II due to partial restoration which ignores the system-
level reliability. Due to economic dynamics of the system,
i.e., the cost sensitivity of system to functional state of each
component, Case II does not allocate resources to some system
components which do not have considerable expected eco-
nomic risk. Furthermore, presence of redundant components
in the system that can compensate the offline state of other
components is another reason for observed behavior. However,
from the system-level reliability perspective, the restoration
scheme of Case II is not always preferable.

For Case III, rather than deriving a scenario-based solution,
the expected value of the parameters are plugged into the
proposed model. The last columns of Table II and III show
the optimal resource allocation in Case III for substations and
lines, respectively. As shown in Fig. 1 the total expected cost
of restoration in Case III is $15,581,870 which is higher than
Cases I and II (i.e., $15,343,980 and $15,065,320, respec-
tively). Therefore, the value of stochastic solution which is the
difference between the stochastic solution and the expected
value solution is $237,890 and $516,550, for Cases I and
II, respectively. The expected load interruptions for Cases I,
II, and III are 1,469 MWh, 1,467 MWh, and 1,761 MWh,
respectively. While the expected load interruption cost for Case
III is significantly higher than Cases I and II, the generation
cost of Case I is slightly lower than two other cases.

TABLE I
PROBABILITY OF DAMAGE AND SCALE PARAMETER OF TIME TO REPAIR

FOR GENERATING UNITS

Unit Damage TTR Scale
Number Probability Parameter
G26 0.15 8
G38 0.35 8
G39 0.50 16
G40 0.45 16
G41 0.35 8
G42 0.20 8
G43 0.80 12
G44 0.25 12
G45 0.40 12

As shown in Fig. 2, the optimal resource level for all three
cases starts with a high value, but is dramatically dropped by
the end of the fist working shift. As results show, Cases I and II
have a similar pattern for optimal resource allocation from the
beginning of shift 2 until the end of shift 3. The total resource
costs for Cases I, II, and III are $373,575, $114,450, and
$70,725, respectively. While Case I has the highest, and Case
III has the lowest resource allocation cost, Case II has the most
cost-effective strategy to restore the system. However, due to
contingency of the system to unexpected failures and faults,
the partial restoration strategy of Case II does not provide
the desired system-level reliability in the normal operating
condition. On the other hand, the full restoration strategy of
Case I provides higher system-level reliability in expense of
a higher resource allocation cost. Considering this trade-off,
decision makers can choose the desirable strategy based on

TABLE II
PROBABILITY OF DAMAGE, TIME TO REPAIR PARAMETER, AND THE

DERIVED RESOURCE ALLOCATION FOR BUSES

Bus Damage TTR Scale Schedule Schedule Schedule
Number Probability Parameter (Case I) (Case II) (Case III)
B62 0.70 10 1-10 1-10 1-7
B85 0.20 10 1-9 1-9 1-3
B86 0.40 10 1-8 1-8 1-6
B87 0.15 7 25-28 N/A 9-10

46-65
B88 0.1 10 N/A N/A 3-4
B89 0.05 10 96-107 N/A 1-2
B90 0.60 10 1-18 1-18 1-7
B91 0.10 7 3-4 5-6 6-7
B92 0.30 10 1-4 1-4 1-3
B93 0.05 7 1-8 1-8 2-3
B94 0.40 10 1-30 1-30 1-5
B95 0.20 10 1-8 1-8 2-4
B96 0.25 10 1-11 1-11 1-4

TABLE III
PROBABILITY OF DAMAGE, TIME TO REPAIR SCALE PARAMETER, AND

THE DERIVED RESOURCE ALLOCATION FOR LINES

Line Damage TTR Scale Schedule Schedule Schedule
Number Probability Parameter (Case I) (Case II) (Case III)
L91 0.20 10 1-3 N/A 3-5

67-90
L92 0.30 10 41-63 N/A 5-8
L100 0.10 10 1-2 N/A 1-2

25-38
L101 0.35 10 1-8 N/A 5-8
L131 0.70 10 46-87 N/A 2-9

1-4
L132 0.55 10 1-8 1-8 1-7

72-81
L133 0.30 15 1-3 2-4 1-6
L134 0.25 15 5-7 N/A 2-6
L135 0.35 10 1-13 1-13 3-7

95-107
L136 0.20 10 2-6 N/A 1-3
L137 0.20 15 44-74 N/A 1-4
L138 0.15 15 70-89 N/A 4-7
L139 0.15 15 24-38 N/A 4-7
L140 0.35 10 97-106 N/A 1-5

their system operation preferences.

V. CONCLUSION

A stochastic model to support decision making process
for power system restoration in pre-hurricane phase was
introduced. The model was formulated as a two-stage
stochastic problem with complete recourse. After scenario
reduction, the large scale equivalence of the universe problem
was solved using Benders’ decomposition. Two strategies, i.e.
the full restoration, and the partial restoration strategies were
analyzed; and the value of stochastic was calculated. The
value of stochastic solution as an index, obviously justifies the
advantage of obtaining stochastic solution over expected value
solution. The numerical results demonstrates the merits and
disadvantages of each strategy. While the partial restoration
strategy provides the more cost-effective restoration plan, it



Fig. 1. Expected cost breakdown for three scenarios.

Fig. 2. Optimal resource level for for three scenarios.

may not provide the same system-level reliability that full
restoration strategy secures. However, decision makers can
choose the best strategy based on operations policy of the
utility company.
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